Transverter 23cms DB6NT build by F5LGJ

Architecture of the DB6NT transverter

The local oscillator work with three stages:

- Frequency of oscillator is 96MHz.
- First multiplicator gives 384MHz frequency
- Second multiplicator gives 1152MHz LO frequency.

In the following measurement, I present the results of my version of transverter.

- power, phase noise and spectrum of LO.
- LNA sensivity and gain.
- output power of the PPA.
- conversion gain.

The goal is to compare my construction with DF9IC results or with other transverter.

LO measurement

Spectrum of LO with R&S analyzer.

Close to the carrier: good result.

large view

We can see a lot of spurious.

Origin from the multiplier and the frequencies used.

Fine level measurement of spectrum components

Freq (MHz) level dBm 96 -74.826 -56.083 192 288 -62.196 -34.427 -56.3 480 576 672 768 864 -64.811 -65.43 -29.133 -74.287 960 -74.988 1056 -70.662 1152 1248 9.603 -58.218 1344 1440 1536 -78.098 -72.385 -28.767

Phase noise of LO signal

spurious -37dBc @ 384MHz

-110dBc @ 1000Hz

F5LGJ 01/07/2003

LNA measurement

NF and gain measurement

1.9dB @ 1290MHz with Gain=21dB

I must work on the first stage to improve the NF result. The goal is better than 1.5dB.

Output TX signal measurement

spectrum with output signal

Measurement made after the PA Mitsubishi, but with low 144MHz signal

 $RF \ out = +15dBm$

1152MHz spurious

Spectrum without output signal

We can see the noise of RF TX chain.

F5LGJ 01/07/2003

spectrum span=2MHz

We can see spurious in the output spectrum. The level is lower than specifications (< -60dBc).